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    Abstract   *

Interface technology for geometrically nonlinear
analysis is presented and demonstrated. This technology
is based on an interface element which makes use of a
hybrid variational formulation to provide for compati-
bility between independently modeled connected sub-
domains.  The interface element developed herein ex-
tends previous work to include geometric nonlinearity
and to use standard linear and nonlinear solution proce-
dures. Several benchmark nonlinear applications of the
interface technology are presented and aspects of the
implementation are discussed.

   Introduction   

Rapid detail modeling and reliable analysis method-
ology are needed in order to provide tractable computa-
tional capabilities early in the design of aerospace and
ground vehicle structures.  Although critical structural
details are often not well-defined in the early preliminary
design phases, achieving an understanding of the effect
of certain details can greatly impact early design deci-
sions.  In addition, rapid modeling and analysis capabili-
ties that include such design detail provide early insight
into and predictions of the failure mechanisms of struc-
tural concepts.  Design verification, often satisfied
through refined analysis, may be impacted significantly
by computational methods, simulations and techniques
which predict accurately detailed stress states such as
yield and fracture stresses.  Detail stress analysis often
relies heavily on the finite element method which re-
quires fine mesh discretizations of the structure in the
vicinity of stress or strain concentrations.  The resulting
finite element models generally contain both fine and
coarse mesh discretizations.  Tedious, costly and time
consuming transition modeling is generally used be-
tween the subdomains of fine and coarse refinement.
Such transition modeling is also typically used for as-
sembling independent substructure models, inserting
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part or component detail, global/local modeling and
modifying structural features.  The extensive labor re-
quired for such transition modeling often precludes the
use of the finite element method early in design.

Recently, a method for connecting finite element
models without the use of transition modeling has been
developed.1,2  This method, called interface technology,
is an improved technique for connecting multiple dis-
similar meshed subdomains or substructures to form a
single finite element model.  Compared with conven-
tional transition modeling techniques, this method al-
lows designers to create models for structural analysis
faster and with less effort while retaining computational
accuracy.  The method promises to significantly reduce
engineer modeling time and effort, thus enabling com-
prehensive early design.

Unlike many global/local3,4 and substructuring5-7

approaches, the interface technology provides a means
of connecting independently modeled substructures or
subdomains whose nodes along a common boundary
need not coincide.  The technology is based on a varia-
tional formulation which enforces the compatibility
between the connected subdomains in a weak sense.
This compatibility provides for the interaction between
the independently modeled subdomains.  Conventional
global/local techniques, in which  global coarse models
are used to provide loads or displacements8 for local
refined models, do not account for full subdomain inter-
action including changes in the load path prediction due
to the refined local modeling.  In addition to
global/local modeling, interface technology enables
assembly of independently created model components,
repair patch modeling, contact/friction/sliding applica-
tions and detail model insertion.

The interface technology has been shown to main-
tain solution accuracy for a wide range of applica-
tions.1,2,9,10  The method was developed and validated on
benchmark problems in reference 1, reformulated in the
form of an element in reference 2, and demonstrated on
large scale structural applications in references 9 and 10.
The interface technology has been incorporated into the
commercially available finite element computer code,
MSC/NASTRAN.11,12  However, until recently, the
interface technology has been limited to linear stress
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analysis.  Although linear analysis is quite useful, it
can miss important phenomena.  Ignoring nonlinear
effects can lead to nonconservative predictions for sof-
tening systems and severe weight penalties for stiffen-
ing systems.

Thus, the purpose of this paper is to present the ex-
tended capabilities of the interface technology to geo-
metrically nonlinear analysis.  This nonlinear capability
is developed, described and demonstrated on representa-
tive structures.  A new interface element solution strat-
egy for both linear and nonlinear analysis is developed
and described.  The effectiveness of the approach is
demonstrated using five elastic plate and shell applica-
tions including: a pressure-loaded clamped square plate,
a pressure-loaded clamped cylindrical panel, a point-
loaded hinged cylindrical panel, a moment-loaded canti-
levered plate and a compression-loaded composite panel.
These application problems exhibit nonlinear responses
that verify the capabilities of the technology; namely,
(1) softening, (2) stiffening, (3) snap-through, (4) snap-
back, (5) large rotation behavior and (6) postbuckling.
The guidelines for developing this technology include
the requirements that it be compatible with general-
purpose finite element codes, valid for a wide range of
finite elements, cost-effective and accurate for predicting
the linear and nonlinear responses as well as the overall
and detailed stress states of structural components.

    Overview of the Interface Element   

The interface element was developed in detail in ref-
erence 2 and is briefly described herein. It allows the
independent modeling of different substructures or com-
ponents without concern for one-to-one nodal coinci-
dence between the finite element models.  Moreover, it
acts as “glue” between independent finite element mod-
els with different mesh densities and nodal layouts.
Thus, the interface element provides a transition model-
ing role through an analytical variational procedure and
avoids the use of transition meshes.  It alone does not
improve the quality of the finite element results ob-
tained by a particular model but rather improves the
efficiency of the modeling and makes effective use of
existing finite elements.  By eliminating or reducing
transition modeling, the introduction of distorted ele-
ments, which may degrade the quality of the solution, is
limited to what is required to represent the geometry of
the structure.  In addition, the elimination of unneces-
sary element distortion errors allows the use of a less
refined mesh and therefore, the same qualitative results
may be obtained with fewer degrees of freedom.

Consider, for example, the domain shown in Figure
1 and modeled as three independently discretized sub-
structures.  The interface element is discretized with a
mesh of evenly-spaced pseudo-nodes (open circles in the
figure) which need not be coincident with any of the
interface nodes (filled circles in the figure) of any of the
substructures.  The hybrid variational formulation1,2

employs an integral form for the compatibility between
the interface line element and the finite element sub-
structures.  The displacement vector, v, of  the interface
element is assumed to be independent of the displace-
ment vectors, u, of the substructures to which it is at-
tached.

ΓI1 Γ I3
ΓI2

Γ I

Interface element
and pseudo-nodes

Ω3

Finite element
nodes

Ω2

Ω1

qs
v

Figure 1.  Typical Interface Element
Definit ion.

    Nonlinear Formulation   
In the previous work presented in reference 2, the

interface element was limited to linear analyses.  In the
present work, the range of applicability is extended to
the geometrically nonlinear regime.  The approximation
in  the k th domain, Ω k, is made in terms of the dis-
placements, u ij and v i , and the interface tractions, λ ij.
Tractions and displacements are prescribed on boundaries

Sk
σ( ) and Sk

u( ) , respectively (see Figure 2).
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Figure 2. Linking of Two Domains Using
Interface Technology.
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where for the k th substructure, Fk are the external ap-
plied forces and φ k are the applied tractions.  As usual,

the satisfaction of prescribed displacement on Sk
u( )  is

implied by the approximation for ui.  The Nss sub-
domain equations are completed by enforcing compati-
bility through the use of the constraint integral for the
NI interface elements
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where nss(i) is the number of substructures connected to
interface element i.  Use of this constraint integral cor-
responds to the “frame” method of reference 13.  There-
fore, for the entire domain
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Discretization of displacements in each domain and
displacements and Lagrange multipliers on the interface
yields the final system of equations.  At the finite ele-
ment level, the first integral term in Equation (1) may
be written as
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where nel(k) is the number of elements in the kth sub-
structure.  Equation (4) is evaluated using the nonlinear
strain displacement relations and the constitutive rela-
tion for elastic, small strain behavior and may be rewrit-
ten as
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where qe is a vector of nodal generalized displacements
for the element, k0 is the linear stiffness matrix, kσ is
the geometric stiffness matrix, kL is the large displace-
ment matrix,  and kT is the tangent stiffness matrix.

Upon assembling the element contributions in each
subdomain, Equation (4) may be written as

σ δε δT
k k

T
T k kq K q

k

 dΩ
Ω

=∫ ( )        ( 6 )

where (ΚT)k  is the tangent stiffness matrix for  the kth

substructure.

The independent approximations for the finite ele-
ment displacements, interface displacements, and inter-
face tractions are, respectively

u N q

v T q

R
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=

=

 

λ α

                     (7)

where qij  and qsi
are the nodal degrees of freedom corre-

sponding to uij and v i, and αij  are the unknown coeffi-
cients of the Lagrange multipliers, λ ij.  The matrix N ij

is the matrix of finite element shape functions on sub-
structure j along interface i, Ti is formed as a result of
passing a cubic spline through the evenly-spaced
pseudo-nodes, Rij is formed as a result of using constant
functions for linear finite elements and linear functions
for quadratic finite elements.  

Hence, Equation (3) may be rewritten as
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and defining the interface matrices as
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Thus, for arbitrary qk on Ωk
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for arbitrary qsi on ΓI
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Thus, the resulting system of equations is given in
matrix form as
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where ΚT, q and f are the assembled tangent stiffness
matrix, displacement vector and force vector for the en-
tire structure, and MI, GI, qs and α are the assembled M ij,

Gij, qsi
, and αij for all interface elements. The assembled

tangent stiffness matrix ΚT is a block diagonal matrix
containing the tangent stiffness matrices (ΚT)k of each
of the substructures along its block diagonal.  The inter-
face element “stiffness” matrix and vector of unknowns
are given in the same form as that given for the linear
interface element of reference 2.  However, in the mod-
erate-to-large strain regime, the integral limits for the
coupling terms of Equation (10) are related to the refer-
ence state (the deformed configuration in this implemen-
tation) and account for straining of the interface.  This
straining has been neglected herein but does not ad-
versely affect the interface element performance for this
study.  The system of equations in Equation (14) is
symmetric but not banded nor positive definite.  There-
fore, standard Cholesky solvers may not be used, unless
row or column pivoting is performed to obtain the solu-
tion.  The number of additional degrees of freedom asso-
ciated with the interface element is generally small in
comparison with the total number of degrees of freedom
in the structure.  Thus, modeling flexibility is provided
at a relatively small computational expense.  The com-
putational expense may be reduced additionally as the
efficiency of new solution algorithms for the system of
equations in Equation (14) is increased.  This nonlinear
interface element was implemented within a general-
purpose, finite element code COMET/AR.14  This im-
plementation is briefly described in the next subsection.

    Nonlinear Element Implementation   
The nonlinear solution procedure employed herein

is based on a Newton/Raphson incremental strategy for
automatic load step control.  The so-called modified
Newton/Raphson method, which forms and factors the
tangent stiffness matrix periodically rather than at every
nonlinear iteration, has been used in the nonlinear
analyses of the benchmark applications presented in the
next section.  A corotational formulation15,16 which
identifies the reference state as the current deformed con-
figuration is used to describe the motion.  This formula-
tion separates the rigid body motion from the strain-
producing motion thus allowing for either linear or non-
linear strain-displacement relations at the finite element
level.  Deformations are computed based on the original
configuration within the local corotated frame.  An arc-
length control strategy,17 the most general approach for
obtaining the load-deflection response, is used to handle
limit points with both snap-though and snap-back be-
haviors.  

The standard nonlinear solution strategy has been
adapted to incorporate the interface element.  Interface
element “stiffness” matrices are computed and assembled
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along with the finite element tangent stiffness matrices.
The displacement solutions are used to compute the
increment in the arc-length and predict the solution at
the next load step.  In analyses with the interface ele-
ment, these displacement solutions contain coefficients
of the Lagrange multipliers as well as the nodal dis-
placements (see Equation (14)).  These Lagrange multi-
plier coefficients are eliminated when computing the
arc-length increment.  In addition, in the standard proce-
dure, the number of negative roots is used to determine
the structural instability during loading as well as to
identify changes in the loading direction.  This is not a
viable approach in this work since the indefinite system
of Equation (14) could have both positive and negative
roots even along the stable equilibrium path.  Thus, an
approach based on the change in incremental work is
used herein for the interface technology rather than the
number of negative roots to determine instability and
change in load direction.  The change in incremental
work is essentially the so-called current stiffness pa-
rameter.18

    Numerical Results   

The capabilities of the interface element for geo-
metrically nonlinear analysis are demonstrated on sev-
eral benchmark applications.  The application structures
exhibit a wide variety of response characteristics,
namely, stiffening, softening, snap-through, snap-back,
large rotation, and postbuckling responses.  These re-
sponse characteristics test extensively the robustness of
the nonlinear interface element implementation.  A
nine-node Assumed Natural-coordinate Strain (ANS)
shell element19  has been used in each of the applica-
tions discussed herein.  The ANS element has five de-
grees of freedom at each node (three displacements, two
rotations, and no drilling degree of freedom).  Results
from each interface element analysis (denoted coupled
analysis herein) are compared with a reference solution
obtained by using a reference model (with no interface)
in which the discretization of the most refined independ-
ent substructure model extends over the entire domain.
The reference solutions are obtained from analyses per-
formed as part of this study.  These solutions, in excel-
lent agreement with those published in the open litera-
ture, are used to assess the performance of the interface
technology for the given finite element type, mesh dis-
cretization, and nonlinear solution strategy.

    Clamped Square Plate
An isotropic square plate which is clamped on all

four edges (shown in Figure 3) and is subjected to a
uniform pressure load is used to demonstrate the capa-

bility of the interface technology for a structure exhibit-
ing a stiffening response.  The plate material properties
are 1000 ksi for the Young’s modulus and 0.3 for the
Poisson’s ratio.  The plate edge length, L, is 10 in., and
the thickness, t, is 0.1 in.  The coupled finite element
model is shown in Figure 4.  The interface element is
located at the panel midlength (shown by the gray
shaded line in Figure 4).  In Figure 5, the normalized
pressure load is given as a function of the transverse
deflection at the center of the plate (point C in Figure 3)
normalized by the plate thickness.  The response curve
indicates the stiffening behavior of the plate as the load
is increased.  The coupled analysis, utilizing an interface
element as the coupling agent, is in excellent agreement
with the reference solution.

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

C

P

Clamped

Clamped

ClampedClamped t

AAAAAAAAA
AAAAAAAAA

L

Figure 3. Clamped Square Plate Subjected to
Uniform Pressure.

Interface

L
2

Figure 4. Finite Element Model for Clamped
Square Plate.
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Figure 5. Central Deflection of Clamped
Square Plate.

    Clamped Cylindrical Panel
An isotropic cylindrical panel which is clamped on

all four edges (shown in Figure 6) and is subjected to a
uniform pressure load is used to demonstrate the capa-
bility of the interface technology on a shell structure as
well as for a structure exhibiting a softening response.
This panel configuration is given in the literature and
attributed to Brebbia and Conner.20  The panel material
properties are 450 ksi for the Young’s modulus and 0.3
for the Poisson’s ratio.  The panel planform is square
with a length, L, of 20 in. and a radius, R,  of 100 in.
The panel thickness, t, is 0.125 in.

The finite element model shown in Figure 7 in-
volves two independently modeled, coupled substruc-
tures.  The interface element is located along an axial
line at half the panel planform dimension.  In Figure 8,
the pressure load, p, is shown as a function of the
transverse deflection at the center of the panel (point C
in Figure 6).  The response curve indicates the softening
behavior of the panel as the load is increased.  The cou-
pled analysis utilizing an interface element is in excel-
lent agreement with the reference solution.
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R

L

Figure 6. Clamped Cylinder Subjected to
Uniform Pressure.

Interface

Figure 7. Finite Element Model for Clamped
Cylindrical Panel.
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Figure 8.  Central Deflection of Clamped
 Cylindrical Panel.

As discussed in a previous section, the corotational
formulation allows for the use of either linear or non-
linear strain-displacement relations at the finite element
level.  (The corotational formulation includes a substan-
tial part of the nonlinear response character by separat-
ing out the rigid body motion.)  The interface technol-
ogy provides the flexibility to use different strain ap-
proximations in each of the independent substructures.
The effect of the nonlinear terms in the strain-
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displacement relations on the transverse deflection is
shown in Figure 9.  Results are obtained with linear and
nonlinear strain-displacement relations and are denoted
in Figure 9 by (L) and (NL), respectively. Three refer-
ence solutions are obtained and are given by the solid
lines in the figure.  The first reference solution, denoted
reference (NL) in the figure, is obtained using nonlinear
strain-displacement relations and the discretization of the
most-refined substructure of the coupled model (see
Figure 7) over the entire domain of the panel.  This
finite element model will be referred to hereafter as the
refined reference model.  The second reference solution,
denoted reference (L) in the figure, is obtained using
linear strain-displacement relations and the refined refer-
ence model.  The third reference solution, denoted coarse
reference (L) in the figure, is obtained using linear
strain-displacement relations and the discretization of the
less-refined substructure of the coupled model (see Fig-
ure 7) over the entire domain of the panel.  This third
reference solution is used to bound the results of the
coupled analyses, and the finite element model used will
be referred to hereafter as the coarse reference model.
When linear strain approximations are used, the pre-
dicted structural behavior is not as soft as that behavior
exhibited with nonlinear strain approximations.  This
behavior is illustrated by the comparison of the two
reference solutions obtained with the refined reference
model (solid circles and squares in Figure 9).  This ef-
fect is magnified as the size of the elements is increased,
which is evident by the results for the coarse reference
model (solid triangles in the figure).  The impact of the
use of linear strains is decreased as the mesh is refined.
An enlarged view of the results is shown in Figure 9b
to delineate better the effect of the strain approximation
on the transverse deflection.

As was shown in Figure 8, the interface element
analysis with nonlinear strain approximations (open
circles in Figure 9) is in excellent agreement with the
reference solution with nonlinear strain approximations.
The response obtained with linear strains (open triangles
in Figure 9) illustrates the stiffening of the panel due to
the combined effect of the strain approximation and the
coarse discretization of one of the substructures.  These
results are bounded by the coarse and refined reference
models using linear strain approximations (solid trian-
gles and solid squares in the figure).

0.00

0.05

0.10

0.15

0.20

Pressure,p

0.00 0.03 0.05 0.08 0.10

Transverse Deflection, wc

Coarse Reference (L)

Coupled (L/NL)

Coupled (L)

Coupled (NL)

Reference (L)

Reference (NL)

 (a) Global View

0.10

0.12

0.15

0.17

0.20

0.05 0.08 0.10

Pressure,p

Coarse Reference (L)

Coupled (L/NL)

Coupled (L)

Coupled (NL)

Reference (L)

Reference (NL)

Transverse Deflection, wc

 (b) Enlarged View of Encircled Region

Figure 9.  Effect of Nonlinear Strain
Approximations on Transverse Deflection.

Based on these results, nonlinear strain approxima-
tions are used in the coarse substructure while linear
strain approximations are used in the refined substruc-
ture.  The results of this analysis with combined linear
and nonlinear strain approximations are given by the
open squares in Figure 9 and are denoted by coupled
(L/NL) in the figure.  These results are bounded by the
solutions using the refined reference model with linear
strains and nonlinear strains (solid squares and circles in
the figure, respectively).  Computations with nonlinear
strains are more expensive than those with linear strains
due to the increased number of operations required in
evaluating the nonlinear terms in the strain-
displacement relations.  Hence, a trade-off can be made
between the level of mesh density and the level of non-
linear approximation.  For this benchmark application,
the results obtained with linear strains in the most re-
fined substructure and nonlinear strains in the coarse
substructure were more accurate than the results ob-
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tained with the refined reference model using linear
strains only.  These results demonstrate the unique
analysis capability provided by the interface technology.
Although in this example, the corotational formulation
provided the nonlinear response character in each sub-
structure, this concept may be extended to the applica-
tion of linear/nonlinear substructuring in which one or
more substructures are identified as exhibiting nonlinear
behavior while the other substructures are assumed to
exhibit linear behavior.  In this case, the tangent stiff-
ness matrices are computed for the nonlinear substruc-
tures and assembled along with the linear stiffness ma-
trices for the linear substructures.

    Hinged Cylindrical Panel
An isotropic cylindrical  panel which is hinged on

its two straight edges and free on its two curved edges
(shown in Figure 10) and which is subjected to a con-
centrated load at its center is used to demonstrate the
capability of the interface technology on a structure
exhibiting collapse.  This panel configuration is given
in the literature and attributed to Sabir and Lock.21  The
panel material properties are 3.10275 kN/mm2 (450 ksi)
for the Young’s modulus and 0.3 for the Poisson’s ra-
tio.  The panel radius, R, is 2540 mm. (100 in.); the
panel half-length, L, is 254 mm. (10 in.); and the half-
opening angle, ϕ, is 0.1 radians.  Two panel thick-
nesses, t, were considered: a thickness of 12.7 mm. (0.5
in.) and a thickness of 6.35 mm. (0.25 in.), yielding
radius-to-thickness ratios, R/t, of 400 and 200, respec-
tively.  Both the thick and thin panels exhibit a limit
point and snap-through behavior (See Figure 11) as the
load is increased, and the panels collapse into an in-
verted configuration.  In addition, the thin panel exhib-
its a snap-back behavior (See Figure 12). The coupled
finite element model used for the analysis of both pan-
els is the same as that used for the clamped cylindrical
panel and is shown in Figure 7. The interface is located
along an axial line at the panel half-opening angle, ϕ.
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Figure 10.  Hinged Cylindrical Panel

Subjected to Concentrated Load.
The concentrated load is given as a function of the

transverse deflection at the center of the thick and thin
panels (point C in Figure 10) in Figure 11 and Figure
12, respectively. The response curve for the thick panel
(see Figure 11) indicates the limit point and snap-
through of the panel as the load is increased.  The re-
sponse curve for the thin panel (see Figure 12) indicates
the snap-back behavior of the panel.  The results with
the interface element for both the thin and thick panels
are in excellent agreement with the reference solution.

0

500

1000

1500

2000

2500

0 10 20 30
Transverse Deflection, wc (mm)

Coupled
 Analysis

Reference
 Solution

Panel Snapthrough

Applied
Load, P(N)

Figure 11.  Central Deflection of Thick
Hinged Cylindrical Panel.

-500

-250

0

250

500

750

0 5 10 15 20 25 30
Transverse Deflection, wc (mm)

{

Panel Snapback

Applied
Load, P(N)

Reference
Solution

Coupled
Analysis

Figure 12.  Central Deflection of Thin
Hinged Cylindrical Panel.

    Cantilevered Plate in Pure Bending   
An isotropic rectangular plate (shown in Figure 13)

subjected to an end bending moment is used to demon-
strate the capability of the interface technology for a
structure exhibiting very large rotations.  The plate is
clamped at its root, and, to emulate beam behavior,
symmetry conditions are used on the long edges. This
configuration is often referred to as the elastica problem.
The plate material properties are 120 psi for the
Young’s modulus and 0.0 for the Poisson’s ratio.  The
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plate length, L, is 10 in., and the width, W, and thick-
ness, t, are both 1 in.  The coupled finite element model
is shown in Figure 14 with the interface located at the
panel midwidth.  In Figure 15, the normalized moment
is given as a function of the deflection at the loaded end
of the plate normalized by the plate length.  The results
indicate the very large rotations which the structure un-
dergoes, and the interface element analysis is in excel-
lent agreement with the reference solution. The interface
element performed well even for such large rotations.

L

M Symmetry

Symmetry Clamped

W tAAAAAAAAAAAAAA
AAAAAAAAAAAAAA

AA
AA

Figure 13. Cantilevered Plate Subjected to
Pure Bending.

Figure 14. Finite Element Models for
Cantilevered Plate.
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Figure 15. Deflection of Cantilevered Plate.

    Composite Panel
A composite rectangular panel (shown in Figure

16) subjected to axial compression is used to demon-
strate the capability of the interface technology in the
postbuckling regime.  This panel is clamped at the root
and simply-supported by knife-edge supports on its long
edges to prevent it from buckling as a wide column.
The panel used is a 24-ply orthotropic laminate and is
denoted Panel C4 in the experimental and analytical
results reported by Starnes and Rouse.22  The panel is
fabricated from unidirectional graphite-fiber tapes pre-
impregnated with 450K cure thermosetting epoxy resin.
The ply properties are 19,000 ksi for the longitudinal

Young’s modulus, 1890 ksi for the transverse Young’s
modulus, 930 ksi for the in-plane shear modulus, 250
ksi for the transverse shear modulus, and 0.38 for both
Poisson’s ratios.  The laminate stacking sequence for
the panel is ± ± ±[ ]45 0 45 0 45 0 902 2/ / / / / / s, and the

nominal ply thickness is 0.00551 in.  The panel length,
L, is 20 in., and the width, W, is 6.75 in.  The overall
panel thickness, t, is 0.13 in.  The reference model has
12 elements along the length and 6 elements along the
width.  The panel was observed in the test22 to buckle
into two longitudinal half-waves and one transverse
half-wave which resulted in peak stresses along its cen-
ter.  Thus, the region of interest for this application is
in the vicinity of the center of the panel, and a refined
model is used in that region.

P
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W

Clamped
Simply-Supported

Simply-Supported

Figure 16. Composite Panel Subjected to
 Compressive Loading.

Interfaces

Figure 17.  Finite Element Models for
Composite Panel.
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Figure 18.  Axial End Deflection of Com-
posite Panel.

The coupled finite element model is shown in Fig-
ure 17.  Two interfaces are used in this analysis and are
depicted by the gray shaded lines in Figure 17.  The
compressive load  is given as a function of the axial
deflection at the loaded edge and maximum transverse
deflection normalized by the panel thickness in Figure
18 and Figure 19, respectively.  The response curves
indicate the softening of the panel as the load is in-
creased.  The postbuckling response exhibits large out-
of-plane deflections (over three times the thickness, see
Figure 19).  The interface element analysis is in excel-
lent agreement with the reference solution.
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Figure 19. Maximum Transverse Deflection
for Composite Panel.

    Concluding Remarks   

Interface technology for geometrically nonlinear
analysis of multiple connected subdomains has been

demonstrated.  As in the case of the linear formulation,
the subdomains need not be nodally compatible, and,
thus, the need for potentially complex transition model-
ing is eliminated.  A hybrid variational formulation was
utilized to achieve compatibility, in a variational sense,
between the independently modeled substructures.  The
development of the hybrid formulation in the form of an
element facilitates the implementation of this approach
in standard finite element software packages.  The inter-
face element stiffness is computed and assembled along
with standard finite elements allowing for the use of
standard finite element matrix assemblers and linear and
nonlinear solution procedures.

The interface technology described herein has been
demonstrated on several applications which exhibit a
variety of response characteristics, namely: stiffening,
softening, snap-through, snap-back, large rotations, and
postbuckling.  The applications used to demonstrate the
capabilities of the interface technology for predicting
such responses were a clamped square plate loaded with
a uniform pressure, a clamped cylindrical panel loaded
with uniform pressure, a hinged cylindrical panel with a
concentrated transverse load, a cantilevered plate sub-
jected to an end bending moment, and a composite panel
loaded in axial compression.  The results obtained using
the interface technology were in excellent agreement
with the reference solutions for all cases.

The capability of using different orders of strain ap-
proximations in the independent substructures has been
demonstrated with the analysis of the clamped cylindri-
cal panel.  This unique analysis capability allows the
analyst to specify the order of the strain-displacement
approximation to be used in each substructure.  Nonlin-
ear strain approximations are computationally more
expensive than linear strain approximations due to the
increased number of operations required in evaluating
the nonlinear terms in the strain-displacement relation.
Hence, a trade-off can be made between the level of
mesh density and the level of nonlinear approximation.
In the case studied, the results obtained with linear
strains in the most refined substructure and nonlinear
strains in the coarse substructure were more accurate
than the results obtained with the reference model ap-
proximated with linear strains only.  In addition, as
often done in nonlinear substructuring, the analyst may
use the interface technology to isolate a region requiring
nonlinear strain approximations while using the linear
strain approximations elsewhere.

The interface technology described herein provides a
method for predicting the nonlinear response of plate
and shell problems as well as concomitant detailed
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stress states.  The element has been implemented within
a general-purpose finite element code.
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